Valid Professional-Machine-Learning-Engineer Dumps shared by ExamDiscuss.com for Helping Passing Professional-Machine-Learning-Engineer Exam! ExamDiscuss.com now offer the newest Professional-Machine-Learning-Engineer exam dumps, the ExamDiscuss.com Professional-Machine-Learning-Engineer exam questions have been updated and answers have been corrected get the newest ExamDiscuss.com Professional-Machine-Learning-Engineer dumps with Test Engine here:
You work with a data engineering team that has developed a pipeline to clean your dataset and save it in a Cloud Storage bucket. You have created an ML model and want to use the data to refresh your model as soon as new data is available. As part of your CI/CD workflow, you want to automatically run a Kubeflow Pipelines training job on Google Kubernetes Engine (GKE). How should you architect this workflow?
Correct Answer: C
This option is the best way to architect the workflow, as it allows you to use event-driven and serverless components to automate the ML training process. Cloud Storage triggers are a feature that allows you to send notifications to a Pub/Sub topic when an object is created, deleted, or updated in a storage bucket. Pub/Sub is a service that allows you to publish and subscribe to messages on various topics. Pub/Sub-triggered Cloud Functions are a type of Cloud Functions that are invoked when a message is published to a specific Pub/Sub topic. Cloud Functions are a serverless platform that allows you to run code in response to events. By using these components, you can create a workflow that starts the training job on a GKE cluster as soon as a new file is available in the Cloud Storage bucket, without having to manage any servers or poll for changes. The other options are not as efficient or scalable as this option. Dataflow is a service that allows you to create and run data processing pipelines, but it is not designed to trigger ML training jobs on GKE. App Engine is a service that allows you to build and deploy web applications, but it is not suitable for polling Cloud Storage for new files, as it may incur unnecessary costs and latency. Cloud Scheduler is a service that allows you to schedule jobs at regular intervals, but it is not ideal for triggering ML training jobs based on data availability, as it may miss some files or run unnecessary jobs. References: * Cloud Storage triggers documentation * Pub/Sub documentation * Pub/Sub-triggered Cloud Functions documentation * Cloud Functions documentation * Kubeflow Pipelines documentation