Valid Professional-Machine-Learning-Engineer Dumps shared by ExamDiscuss.com for Helping Passing Professional-Machine-Learning-Engineer Exam! ExamDiscuss.com now offer the newest Professional-Machine-Learning-Engineer exam dumps, the ExamDiscuss.com Professional-Machine-Learning-Engineer exam questions have been updated and answers have been corrected get the newest ExamDiscuss.com Professional-Machine-Learning-Engineer dumps with Test Engine here:
You want to rebuild your ML pipeline for structured data on Google Cloud. You are using PySpark to conduct data transformations at scale, but your pipelines are taking over 12 hours to run. To speed up development and pipeline run time, you want to use a serverless tool and SQL syntax. You have already moved your raw data into Cloud Storage. How should you build the pipeline on Google Cloud while meeting the speed and processing requirements?
Correct Answer: D
BigQuery is a serverless, scalable, and cost-effective data warehouse that allows users to run SQL queries on large volumes of data. BigQuery Load is a tool that can ingest data from Cloud Storage into BigQuery tables. BigQuery SQL is a dialect of SQL that supports many of the same functions and operations as PySpark, such as window functions, aggregate functions, joins, and subqueries. By using BigQuery Load and BigQuery SQL, you can rebuild your ML pipeline for structured data on Google Cloud without having to manage any servers or clusters, and with faster performance and lower cost than using PySpark on Dataproc. You can also use BigQuery ML to create and evaluate ML models using SQL commands. References: * BigQuery documentation * BigQuery Load documentation * BigQuery SQL reference * BigQuery ML documentation