When implementing an MLOps pipeline, which component is crucial for managing version control and tracking changes in model experiments?
Correct Answer: B
A Model Registry is crucial for managing version control and tracking changes in model experiments within an MLOps pipeline. It serves as a centralized repository to store, version, and manage trained models, their metadata (e.g., hyperparameters, performance metrics), and experiment history, ensuring reproducibility and governance. NVIDIA's AI Enterprise suite, including tools like NVIDIA NGC, supports model registries for streamlined MLOps. Option A (CI System) focuses on code integration, not model tracking. Option C (Orchestration Platform) manages workflows, not versioning. Option D (Artifact Repository) stores general outputs but lacks model-specific features. NVIDIA's MLOps documentation emphasizes the registry's role in AI lifecycle management.