Valid DP-203 Dumps shared by ExamDiscuss.com for Helping Passing DP-203 Exam! ExamDiscuss.com now offer the newest DP-203 exam dumps, the ExamDiscuss.com DP-203 exam questions have been updated and answers have been corrected get the newest ExamDiscuss.com DP-203 dumps with Test Engine here:
You have an Azure Databricks workspace named workspace1 in the Standard pricing tier. You need to configure workspace1 to support autoscaling all-purpose clusters. The solution must meet the following requirements: Automatically scale down workers when the cluster is underutilized for three minutes. Minimize the time it takes to scale to the maximum number of workers. Minimize costs. What should you do first?
Correct Answer: B
For clusters running Databricks Runtime 6.4 and above, optimized autoscaling is used by all-purpose clusters in the Premium plan Optimized autoscaling: Scales up from min to max in 2 steps. Can scale down even if the cluster is not idle by looking at shuffle file state. Scales down based on a percentage of current nodes. On job clusters, scales down if the cluster is underutilized over the last 40 seconds. On all-purpose clusters, scales down if the cluster is underutilized over the last 150 seconds. The spark.databricks.aggressiveWindowDownS Spark configuration property specifies in seconds how often a cluster makes down-scaling decisions. Increasing the value causes a cluster to scale down more slowly. The maximum value is 600. Note: Standard autoscaling Starts with adding 8 nodes. Thereafter, scales up exponentially, but can take many steps to reach the max. You can customize the first step by setting the spark.databricks.autoscaling.standardFirstStepUp Spark configuration property. Scales down only when the cluster is completely idle and it has been underutilized for the last 10 minutes. Scales down exponentially, starting with 1 node. Reference: https://docs.databricks.com/clusters/configure.html