Valid Professional-Machine-Learning-Engineer Dumps shared by ExamDiscuss.com for Helping Passing Professional-Machine-Learning-Engineer Exam! ExamDiscuss.com now offer the newest Professional-Machine-Learning-Engineer exam dumps, the ExamDiscuss.com Professional-Machine-Learning-Engineer exam questions have been updated and answers have been corrected get the newest ExamDiscuss.com Professional-Machine-Learning-Engineer dumps with Test Engine here:
You are working on a Neural Network-based project. The dataset provided to you has columns with different ranges. While preparing the data for model training, you discover that gradient optimization is having difficulty moving weights to a good solution. What should you do?
Correct Answer: B
Representation transformation (normalization) is a technique that transforms the features to be on a similar scale, such as between 0 and 1, or with mean 0 and standard deviation 1. This technique can improve the performance and training stability of the neural network model, as it can prevent the gradient optimization from being dominated by features with larger scales, and help the model converge faster and better. There are different types of normalization techniques, such as min-max scaling, z-score scaling, log scaling, etc. You can learn more about normalization techniques from the following web search results: * Normalization | Machine Learning | Google for Developers * NORMALIZATION TECHNIQUES IN TRAINING DNNS: METHODOLOGY, ANALYSIS AND ... * Visualizing Different Normalization Techniques | by Dibya ... - Medium * Data Normalization Techniques: Easy to Advanced (& the Best)