Valid Professional-Machine-Learning-Engineer Dumps shared by ExamDiscuss.com for Helping Passing Professional-Machine-Learning-Engineer Exam! ExamDiscuss.com now offer the newest Professional-Machine-Learning-Engineer exam dumps, the ExamDiscuss.com Professional-Machine-Learning-Engineer exam questions have been updated and answers have been corrected get the newest ExamDiscuss.com Professional-Machine-Learning-Engineer dumps with Test Engine here:
You are building a model to predict daily temperatures. You split the data randomly and then transformed the training and test datasets. Temperature data for model training is uploaded hourly. During testing, your model performed with 97% accuracy; however, after deploying to production, the model's accuracy dropped to 66%. How can you make your production model more accurate?
Correct Answer: B
When building a model to predict daily temperatures, it is important to split the training and test data based on time rather than a random split. This is because temperature data is likely to have temporal dependencies and patterns, such as seasonality, trends, and cycles. If the data is split randomly, there is a risk of data leakage, which occurs when information from the future is used to train or validate the model. Data leakage can lead to overfitting and unrealistic performance estimates, as the model may learn from data that it should not have access to. By splitting the data based on time, such as using the most recent data as the test set and the older data as the training set, the model can be evaluated on how well it can forecast future temperatures based on past data, which is the realistic scenario in production. Therefore, splitting the data based on time rather than a random split is the best way to make the production model more accurate.