Valid Databricks-Machine-Learning-Associate Dumps shared by ExamDiscuss.com for Helping Passing Databricks-Machine-Learning-Associate Exam! ExamDiscuss.com now offer the newest Databricks-Machine-Learning-Associate exam dumps, the ExamDiscuss.com Databricks-Machine-Learning-Associate exam questions have been updated and answers have been corrected get the newest ExamDiscuss.com Databricks-Machine-Learning-Associate dumps with Test Engine here:
A machine learning engineer is trying to scale a machine learning pipeline by distributing its single-node model tuning process. After broadcasting the entire training data onto each core, each core in the cluster can train one model at a time. Because the tuning process is still running slowly, the engineer wants to increase the level of parallelism from 4 cores to 8 cores to speed up the tuning process. Unfortunately, the total memory in the cluster cannot be increased. In which of the following scenarios will increasing the level of parallelism from 4 to 8 speed up the tuning process?
Correct Answer: B
Increasing the level of parallelism from 4 to 8 cores can speed up the tuning process if each core can handle the entire dataset. This ensures that each core can independently work on training a model without running into memory constraints. If the entire dataset fits into the memory of each core, adding more cores will allow more models to be trained in parallel, thus speeding up the process. Reference: Parallel Computing Concepts