Valid Databricks-Certified-Professional-Data-Engineer Dumps shared by ExamDiscuss.com for Helping Passing Databricks-Certified-Professional-Data-Engineer Exam! ExamDiscuss.com now offer the newest Databricks-Certified-Professional-Data-Engineer exam dumps, the ExamDiscuss.com Databricks-Certified-Professional-Data-Engineer exam questions have been updated and answers have been corrected get the newest ExamDiscuss.com Databricks-Certified-Professional-Data-Engineer dumps with Test Engine here:
Where in the Spark UI can one diagnose a performance problem induced by not leveraging predicate push-down?
Correct Answer: E
This is the correct answer because it is where in the Spark UI one can diagnose a performance problem induced by not leveraging predicate push-down. Predicate push-down is an optimization technique that allows filtering data at the source before loading it into memory or processing it further. This can improve performance and reduce I/O costs by avoiding reading unnecessary data. To leverage predicate push-down, one should use supported data sources and formats, such as Delta Lake, Parquet, or JDBC, and use filter expressions that can be pushed down to the source. To diagnose a performance problem induced by not leveraging predicate push-down, one can use the Spark UI to access the Query Detail screen, which shows information about a SQL query executed on a Spark cluster. The Query Detail screen includes the Physical Plan, which is the actual plan executed by Spark to perform the query. The Physical Plan shows the physical operators used by Spark, such as Scan, Filter, Project, or Aggregate, and their input and output statistics, such as rows and bytes. By interpreting the Physical Plan, one can see if the filter expressions are pushed down to the source or not, and how much data is read or processed by each operator. Verified Reference: [Databricks Certified Data Engineer Professional], under "Spark Core" section; Databricks Documentation, under "Predicate pushdown" section; Databricks Documentation, under "Query detail page" section.