Valid Databricks-Certified-Professional-Data-Engineer Dumps shared by ExamDiscuss.com for Helping Passing Databricks-Certified-Professional-Data-Engineer Exam! ExamDiscuss.com now offer the newest Databricks-Certified-Professional-Data-Engineer exam dumps, the ExamDiscuss.com Databricks-Certified-Professional-Data-Engineer exam questions have been updated and answers have been corrected get the newest ExamDiscuss.com Databricks-Certified-Professional-Data-Engineer dumps with Test Engine here:
A junior data engineer is working to implement logic for a Lakehouse table namedsilver_device_recordings. The source data contains 100 unique fields in a highly nested JSON structure. Thesilver_device_recordingstable will be used downstream to power several production monitoring dashboards and a production model. At present, 45 of the 100 fields are being used in at least one of these applications. The data engineer is trying to determine the best approach for dealing with schema declaration given the highly-nested structure of the data and the numerous fields. Which of the following accurately presents information about Delta Lake and Databricks that may impact their decision-making process?
Correct Answer: D
Explanation This is the correct answer because it accurately presents information about Delta Lake and Databricks that may impact the decision-making process of a junior data engineer who is trying to determine the best approach for dealing with schema declaration given the highly-nested structure of the data and the numerous fields. Delta Lake and Databricks support schema inference and evolution, which means that they can automatically infer the schema of a table from the source data and allow adding new columns or changing column types without affecting existing queries or pipelines. However, schema inference and evolution may not always be desirable or reliable, especially when dealing with complex or nested data structures or when enforcing data quality and consistency across different systems. Therefore, setting types manually can provide greater assurance of data quality enforcement and avoid potential errors or conflicts due to incompatible or unexpected data types. Verified References: [Databricks Certified Data Engineer Professional], under "Delta Lake" section; Databricks Documentation, under "Schema inference and partition of streaming DataFrames/Datasets" section.